您好!欢迎光临工博士商城

德国倍福工业自动化

产品:70    
联系我们
您当前的位置:首页 » 新闻中心 » 倍福利用机器学习实现方便面包装的实时检测
产品分类
新闻中心
倍福利用机器学习实现方便面包装的实时检测
发布时间:2022-03-18        浏览次数:113        返回列表
          倍福模块天津丰昱在这个项目中帮助终用户快速实施了高性能的质量控制系统。他们先研究了封包机的机械和电气结构。据天津丰昱介绍,在这个过程中他们发现,由于倍福产品和技术具有良好的开放性和灵活性,非常适合用于采集所需的分析数据。他们在封包机内安装了几个传感器,并利用 TwinCAT Scope View 快速而方便地采集到批数据,以进行样机分析。通过随后的数据分析发现:当切刀切中调味包时,在采集的数据中会观测到一定的扰动。然而,经过实践证明,使用传统的工程设计方法无法可靠地检测出造成瑕疵品的扰动因素。因为这里需要考虑一些不确定性因素对数据的影响,如震动、包装材质的变化、传送带的速度变化和切刀应力的变化,等等。此分析应用要求非常严苛,因此,天津丰昱决定使用 TwinCAT 机器学习软件来解决这一难题。
 
 
6}6U}O5(WJA~K9G$3WC4_XO
 
机器学习在工业领域的应用
 
         瑕疵品检测的实质就是使用分类器把无瑕疵和有瑕疵的产品区分开来。如果使用基于 ML 的分类器,需要基于样本数据训练一个数学模型,从而无需显式编程就能做出正确的决策。
 
          倍福可以提供各种工具和开放接口,支持从数据采集和模型训练,到将调整好的模型直接部署到控制系统中等整个工程周期:
 
       – 数据采集:数据的数量和质量对采用机器学习方法的应用场景具有决定性的影响。倍福 I/O 模块和软件产品种类繁多,几乎可以满足采集任何种类数据的要求。TwinCAT 软件中的各种功能插件,如 Scope View、Database Server、Data Agent 和 Analytics Logger 等工具可以采集并将数据存储到工业 PC、本地或远程数据库或者云端。
 
        – 模型训练:通常需要先对采集到的数据进行预分析或预处理,以期找到这些原始数据与期望结果的关联性,或加强关联性。然后再选择一个合适的机器学习算法,并设置超参数训练模型。倍福推荐使用如 PyTorch、Keras、Scikit-learn等开放的机器学习框架进行模型训练。后,将训练好的模型保存为 ONNX(开放神经网络交换格式文件)标准化数据交换格式的文件。ONNX 文件描述了训练好的模型的运算和参数,然后可以转化成二进制格式(BML)文件,更适合在 TwinCAT 中进行序列化(即加载执行)。
 
        – 模型部署:针对机器学习(TF3800 和 TF3810)的 TwinCAT Runtime 环境,可以将训练好的模型文件(BML 格式)动态加载到控制器中,模型可以在控制器中实时运行,其执行周期小于 1 ms。这样可以直接处理推理结果(执行训练好的机器学习模型),并通过超高速 EtherCAT 通讯系统传输给输出设备,实现设备的实时控制。
 





了解更多详情关注德国倍福模块
2022-03-18  本文摘自网络



 

联系热线:13917349335   联系人:侯经理 联系地址:上海市宝山区富联一路98弄6号

技术和报价服务:星期一至星期六8:00-22:00 德国倍福工业自动化