机器学习在工业领域的应用
瑕疵品检测的实质就是使用分类器把无瑕疵和有瑕疵的产品区分开来。如果使用基于 ML 的分类器,需要基于样本数据训练一个数学模型,从而无需显式编程就能做出正确的决策。
倍福可以提供各种工具和开放接口,支持从数据采集和模型训练,到将调整好的模型直接部署到控制系统中等整个工程周期:
– 数据采集:数据的数量和质量对采用机器学习方法的应用场景具有决定性的影响。倍福 I/O 模块和软件产品种类繁多,几乎可以满足采集任何种类数据的要求。TwinCAT 软件中的各种功能插件,如 Scope View、Database Server、Data Agent 和 Analytics Logger 等工具可以采集并将数据存储到工业 PC、本地或远程数据库或者云端。
– 模型训练:通常需要先对采集到的数据进行预分析或预处理,以期找到这些原始数据与期望结果的关联性,或加强关联性。然后再选择一个合适的机器学习算法,并设置超参数训练模型。倍福推荐使用如 PyTorch、Keras、Scikit-learn等开放的机器学习框架进行模型训练。后,将训练好的模型保存为 ONNX(开放神经网络交换格式文件)标准化数据交换格式的文件。ONNX 文件描述了训练好的模型的运算和参数,然后可以转化成二进制格式(BML)文件,更适合在 TwinCAT 中进行序列化(即加载执行)。
– 模型部署:针对机器学习(TF3800 和 TF3810)的 TwinCAT Runtime 环境,可以将训练好的模型文件(BML 格式)动态加载到控制器中,模型可以在控制器中实时运行,其执行周期小于 1 ms。这样可以直接处理推理结果(执行训练好的机器学习模型),并通过超高速 EtherCAT 通讯系统传输给输出设备,实现设备的实时控制。
2022-03-18 本文摘自网络